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Caspases, a family of aspartate-specific cysteine proteases, play a major role in apoptosis and a variety of physiological and
pathological processes. Fourteen mammalian caspases have been identified and can be divided into two groups: inflammatory
caspases and apoptotic caspases. Based on the structure and function, the apoptotic caspases are further grouped into
initiator/apical caspases (caspase-2, -8, -9, and -10) and effector/executioner caspases (caspase-3, -6, and -7). In this paper, we
discuss what we have learned about the role of individual effector caspase in mediating both apoptotic and nonapoptotic events,
with special emphasis on leukemia-specific oncoproteins in relation to effector caspases.

1. Introduction

The original investigations showed that CED-3 and CED-4
genes play essential roles in either the initiation or execution
of the cell death program during the development of the
model organism nematode Caenorhabditis elegans (C.
elegans). Further study proposed that CED-3 acts as a
cysteine protease in controlling the onset of programmed
cell death in C. elegans, and the CED-3 protein in C. elegans
is similar to human interleukin-1β (IL-1β) converting
enzyme (ICE) gene, a cysteine protease that can cleave the
31 kD inactive precursor of IL-1β to generate the active
form of cytokine. Overexpression of ICE (currently named
caspase-1) is sufficient to induce programmed cell death
of mammalian cells, suggesting that members of the CED-
3/ICE gene family might function in programmed cell death
in vertebrates [1]. With this encouragement, so far fourteen
members of mammalian caspase family have been identified
[2]. In general, caspase presents within the cell as inactive
zymogen that consists of an N-terminal prodomain of
variable length, a large subunit (p20), a short linker motif,
and a small subunit (p10). In response to apoptotic stimuli,
the zymogens are activated through proteolytic processing at
specific asparagine residues located within the prodomain,
resulting in the generation of active caspases in the form of

(p20)2–(p10)2 heterotetramer. Active caspases subsequently
initiate apoptosis or inflammatory responses by the cleavage
of specific substrates [2, 3]. Based on the structure and
function, the caspase family can be divided into three
categories. The caspases bearing larger prodomains are
inflammatory caspases (caspase-1, -4, -5, -11, -12, -13, and
-14) and initiator/apical/upstream of apoptosis caspases
(caspase-2, -8, -9, and -10), while caspases with shorter
prodomains are effector/executioner/downstream caspases
(caspase-3, -6, and -7). The effector caspases perform the
actual destruction of the cell and are proteolytically activated
by the apical caspases that initiate the caspase cascade.
Caspase zymogen can be activated by the so-called extrinsic
pathway through the death receptor signaling complex for
procaspases-8 and -10, and the intrinsic mitochondria-
mediated pathway through the apoptosome as activating
complex for procaspase-9. In addition, caspases can also
be activated by the granzyme B-mediated and endoplasmic
reticulum (ER) stress-mediated pathways [2–4].

The executioner caspases and initiator caspases possess
distinct mechanisms of activation-cleavage for the execution-
ers and cleavage-independent dimerization for the initiators
[5]. The executioner caspases exist constitutively within the
cell as inactive dimers and require cleavage within their
interdomain linker for activation. In contrast, the zymogens
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of the initiator caspases exist as inactive monomers and
require dimerization to get activated. Of note, this activation
is independent of cleavage, which is different from the
common mechanism shared by the executioner caspases and
most other protease zymogens. Upon activation, the effector
caspases carry out the death signal through cleavage of their
specific substrates that leads to activation of other destructive
enzymes such as DNases or degradation of structural and
signalling proteins within the cell. As specific cysteine
proteases, caspases typically recognize XXXD, a four-amino-
acid motif with an asparagine as the C-terminal residue and
cleaving site. Thus far, more than 390 caspase substrates have
been identified, including a number of leukemia-specific
proteins that will be discussed later [5–8].

2. Caspase-3

The human caspase-3 gene, a homology to C. elegans CED-
3 gene, encodes a 32 kDa protein and was first cloned from
human Jurkat T-lymphocytes in 1994 [9]. Extensive studies
have identified caspase-3 as the primary effector caspase
in most mammalian cells including leukemia cells [10].
Recently, caspase-3 has been demonstrated to play an impor-
tant role in determining the cellular sensitivity to diverse
apoptotic stimuli, including doxorubicin [11], etoposide
[11], and cisplatin [12]. In addition, caspase-3 is involved in
a number of nonapoptotic events including proliferation of
forebrain cells, keratinocytes and B-cells, MHC II expression
and dendritic cell maturation, differentiation of neural stem
cells, myoblasts, osteoblasts, platelets, erythroblasts, and
lens epithelial cells [13–22]. Caspase-3-dificient mice exhibit
strain-specific phenotypes. For example, caspase-3-deficient
129X1/SvJ mice are prenatal lethal and exhibit significant
neural precursor cell expansion and exencephaly. In contrast,
caspase-3-deficient C57BL/6 mice are viable, fertile and
display no apparent brain pathology [23, 24].

3. Caspase-7

Caspase-7 was independently cloned as ICE-LAP3, Mch3,
and CMH-1 in three different laboratories. Due to the
high similarity in structure (58%) and substrates specificity
with caspase-3, caspase-7 has been considered functionally
redundant with caspase-3 [25]. Indeed, similar to caspase-
3, caspase-7-deficient mice on a C57BL/6 background have
a normal lifespan and display little discernable apoptotic
phenotype. However, mice deficient for both caspase-3 and
-7 in the same strain die shortly after birth, supporting
the functional redundancy of these two caspases during
embryogenesis [24, 26]. More intriguingly, several studies
using cell-free extracts system or caspase-7-deficient mice
revealed that caspase-7 also performs distinct, specialized
roles in typical apoptosis, ER stress pathway, and inflam-
matory responses [25, 27–29]. For instance, Walsh et al.
screened 20 different purified substrates and found that 12
of them including Bid, X-linked IAP (XIAP), gelsolin, and
caspase-6 were preferentially cleaved by caspase-3, whereas
one (cochaperone p23) was more susceptible to proteolytic
processing by caspase-7 [27].

4. Caspase-6

Caspase-6 is not as broadly studied as caspases-3 and -7,
but is considered as an effector caspase based on its short
prodomain and interdomain cleavage activation mechanism
[5]. Caspase-6 substrates include a wide range of proteins
involved in cell cycle, survival, or development such as
SATB1, p27Kip1, Notch1, AP-2α, lamin A, Akt, and 5-
lipoxygenase [30–37]. Caspase-6-deficient mice develop nor-
mally and are only mildly resisted to anti-Fas-induced apop-
tosis [38]. Interestingly, caspase-6 has been demonstrated
to play critical roles in nonapoptotic procedures including
B-cell activation and differentiation, axonal degeneration,
and human gastric and colorectal carcinomas development
[37, 39, 40].

5. Leukemia-Associated Fusion Proteins as
Substrates of Effector Caspases

Since Nowell and Hungerford discovered Philadelphia
chromosome originated from t(9;22) in chronic myeloid
leukemia (CML) in 1960, chromosomal aberrations have
attracted much attention in the field of cancer cytogenetics,
particularly in hematologic malignancies [41, 42]. To date,
more than 500 recurrent chromosomal aberrations have
been identified in leukemia, a frequency much higher as
compared to solid tumors [43]. Chromosomal translocations
are the most commonly happened and well characterized
among all the chromosome disturbances. For instance, the
RUNX1 gene, located in chromosome 21q22 and a pivotal
regulator of definitive hematopoiesis, has been identified in
17 translocations at the molecular level [44]. The occurrence
of subtype-specific chromosomal translocations in leukemia
strongly suggests that these aberrations play important roles
in the process of carcinogenesis. Moreover, chromosomal
translocations are also used as diagnostic and therapeutic
markers for leukemia [45, 46]. Based on the important role
of these fusion proteins in the initiation and development of
specific leukemia, drug-triggered fusion protein inhibition
or degradation has been proven to be a successful strategy
in the treatment of leukemia. Of great interests, other
than ubiquitination, several prevalent fusion proteins have
been demonstrated to be degraded as caspase-3 substrates,
including PML-RARα, AML1-ETO, BCR-ABL, and TAF15-
CIZ/NMP4 [8, 47–49]. More importantly, rather than merely
a by-stander apoptotic effect, the proteolysis of these fusion
proteins by caspase is mostly involved in nonapoptotic events
such as cell differentiation and proliferation. This provides
a new mechanism and potential that might help to develop
novel strategy to cure fusion protein-associated leukemia.

5.1. PML-RARα. The chromosome translocation t(15;17)-
(q22;q21) is seen in 98% acute promyelocytic leukemia
(APL) patients, characterized by a terminal differentiation
block of myeloid cell development [45, 50, 51]. This translo-
cation juxtaposes the promyelocytic leukemia (PML) gene
on chromosome 15 with the retinoic acid receptorα (RARα)
gene on chromosome 17 and results in the expression of
the PML-RARα fusion protein in hematopoietic myeloid
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cells. This frequently occurred fusion protein initiates APL
by acting as a transcriptional repressor that interferes with
genes involved in cell differentiation, apoptosis, and self-
renewal [50, 52, 53]. Two therapeutic agents in clinical
use for APL, all-transretinoic acid (ATRA), and arsenic
trioxide (As2O3) can target PML-RARα and induce PML-
RARα degradation through ubiquitin-proteasome pathway,
resulting in a complete remission with the differentiation
and apoptosis of leukemic cells [54–56]. Earlier, Nervi et
al. found that PML-RARα is cleaved by a caspase-3-like
activity induced by ATRA treatment and identified aspartate
522 within the α-helix region of the PML component as a
caspase-3 cleavage site. Interestingly, inhibition of caspase
activity could prevent retinoic acid- (RA-) induced PML-
RARα degradation without impairing RA-induced differen-
tiation, suggesting that APL cells may undergo differentiation
in the presence of PML-RARα expression [49]. These
findings are in agreement with recent data indicating that
other than degrade PML-RARα, ATRA is able to induce
a switch in PML-RARα activity from a repressor to an
activator of myeloid differentiation, possibly by triggering
its transcriptional activator function on specific RA-target
genes [57–59]. As proposed by the authors, another potential
contribution of the degradation of PML-RARα by caspase-
3 is to leave the RARα component intact and mediate RA-
dependent transcription since the major caspase cleavage site
locates within the PML component of the fusion protein
[49]. Taken together, the role of cleavage of PML-RARα by
caspase-3 might play a critical role in ATRA-induced APL
differentiation.

5.2. AML1-ETO. The chromosome translocation t(8;21)-
(q22;q22) was firstly identified by Dr. Janet Rowley in
1973 during the analysis of a leukemia patient sample. It
is one of the most frequently occurred genetic abnormal-
ities in acute myeloid leukemia (AML), identified in 15–
20% of AML patients and over 40% cases of AML-M2
subtype and rare cases of M0, M1, and M4 subtypes of
the French-American-British classification [60, 61]. This
translocation leads to expression of the AML1-ETO fusion
transcription factor which is composed of the first 177
amino acids of AML1/RUNX1 and almost the entire ETO
(also known as RUNX1T1 or MTG8) protein. This fusion
protein displays dichotomous function since it not only
blocks differentiation but also induces growth arrest and
apoptotic susceptibility of leukemic cells [62–64]. Similar
to PML-RARα, both apoptosis-independent and -dependent
degradation of AML1-ETO have been reported [48, 56, 65–
68], but the precise mechanism and biological significance of
AML1-ETO degradation remain obscure. Recently, we found
that AML1-ETO endows leukemic cells with susceptibility
to both extrinsic and intrinsic apoptosis and provided
direct evidence showing AML1-ETO as a caspase-3 substrate.
Site-directed mutagenesis analyses mapped two aspartates
(TMPD188 and LLLD368) within ETO component as caspase-
3-targeted sites in the AML1-ETO sequence. More intrigu-
ingly, proteolytic cleavage of AML1-ETO is essential for the
apoptosis-enhancing effect of AML1-ETO protein because
double mutation of aspartates at 188 and 368 abrogated the

apoptosis-amplified action of AML1-ETO completely, while
expression of the caspase-3-cleaved AML1-ETO C-terminal
fragment is sufficient to enhance apoptotic sensitivity [48].

The mechanism by which AML1-ETO contributes to
AML development is not clearly established. Sole expression
of AML1-ETO failed to generate leukemia in various murine
transgenic models, suggesting that additional genetic events
might be necessary for AML1-ETO-positive cells to adopt
leukemogenic behavior [69]. Because the effect of full-length
AML1-ETO on apoptosis does not favor leukemogenesis,
we proposed that mutation of caspase-3-targeted sites that
would result in the abrogation of apoptosis-enhancing effect
might exist in t(8;21)-positive AML patients. In fact, a pre-
viously unknown spliced variant transcript of AML1-ETO
(AML1-ETO9a) in AML patients encoding a C-terminally
truncated AML1-ETO protein, which could induce rapid
development of leukemia in murine retroviral transduction-
transplantation model, has been identified in a number of
AML patients [70].

5.3. BCR-ABL. The Philadelphia chromosome, resulting
from a reciprocal translocation between chromosomes 9q34
and 22q11, generates a 190- or 210-kDa fusion protein
BCR-ABL identified in more than 95% of chronic myeloid
leukemia (CML) and half of patients with adult-onset
acute lymphoblastic leukemia (ALL) [41, 71–73]. The BCR-
ABL oncoprotein is a constitutively active tyrosine kinase
that endows the leukemic cells with growth advantage.
In addition, leukemic blasts expressing BCR-ABL display
resistance to apoptosis, lack of cell adhesion, and arrested
differentiation [73–76]. Similar to PML-RARα, downregu-
lation of BCR-ABL has been observed during differentia-
tion of leukemic cells, but the mechanism is still largely
unknown [77, 78]. Recently, using a K562 cell line transfected
with a temperature-sensitive mutant of p53, Cotter group
demonstrated that p53-induced erythroid differentiation in
K562 cells required caspase activity, which resulted in the
cleavage of C-ABL and BCR-ABL tyrosine kinases in the
absence of apoptosis [47]. In vitro experiment showed that
C-ABL and BCR-ABL proteins are targets for caspase-3 and
-7 but not for caspase-6 and -8. Interestingly, although C-
ABL and BCR-ABL proteins can be detected in both nucleus
and cytoplasm/cytoskeleton, the nuclear pool of BCR-ABL
and C-ABL proteins is preferentially cleaved by caspase(s)
following p53 expression in K562 cells, suggesting that only
proteins present in a particular location are targeted for
degradation [47].

The central role of BCR-ABL kinase in leukemogenesis
promotes it as an ideal target for drug screens to treat
CML with the attempts to decrease the amount of the
BCR-ABL transcripts and/or to inhibit its tyrosine kinase
activity. Imatinib mesylate (Gleevec, STI-571), which blocks
the binding of ATP to the activated tyrosine kinase and allows
the leukemic cells to differentiate and undergo apoptosis,
has revolutionized the treatment of CML [79]. However,
development of resistance towards imatinib has been a
major limitation particularly in the treatment of advanced-
stage CML [46]. Mechanisms underlying drug resistance
include overexpression of BCR-ABL and amplification of
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the BCR-ABL gene, acquired additional genomic alterations,
and point mutations within the ABL kinase domain that
interfere with imatinib binding [80, 81]. More recently, BCR-
ABL alternative splicing has been described in a significant
number of CML patients and recognized as a common
mechanism for drug resistance [82–84]. Ma et al. described
several novel mutations that result in BCR-ABL truncations
of various lengths within the kinase domain, leading to
mutants missing the ABL C-terminal nuclear localization sig-
nal (NLS), DNA- and actin-binding (DB and AB) domains,
respectively [84]. How did these truncations occur and their
contributions to the drug resistance deserve further investi-
gation. Of note, cleavage at the sequence DTAD, one of the
caspase-3-targeted sites within BCR-ABL sequence, would
release a 52-kDa fragment, leaving the kinase domain intact
[47]. These newly identified kinase domain truncations may
provide a novel mechanism associated with drug resistance
that is caused by executioner caspase activity.

5.4. TAF15-CIZ/NMP4. TAF15 belongs to a DNA- and RNA-
binding protein family, known as the FET (also named TET)
family that comprises TLS/FUS (translocated in liposar-
coma), EWSR1 (Ewing sarcoma), and TAF15. Members of
the FET family are implicated in transcriptional activation,
mRNA/microRNA processing, and maintenance of genomic
integrity [8, 85, 86]. More intriguingly, the fusion of FET
proteins to various transcription factors (i.e., ERG, ATFI,
CHOP, FLI-I) has been found in multiple human malig-
nancies including leukemia and solid tumors. Recently, a
chromosomal translocation at t(12;17)(p13;q11) or its vari-
ant t(12;22)(p13;q12) resulting in the rearrangement of the
EWSR1 or TAF15 with the transcription factor CIZ/NMP4
(Cas-interacting zinc finger protein/nuclear matrix protein
4) was identified in AML [87]. Furthermore, TAF15-CIZ
fusion proteins and wild-type TAF15 are demonstrated
to be cleaved by caspases-3 and -7 both ex vivo and in
vitro. The cleavage site recognized by these two caspases
is 106DQPD/Y110 [8]. Due to the lack of understanding of
TAF15-CIZ fusion protein, the function and significance of
its cleavage by caspase-3/7 is largely unknown. It is interest-
ing that v-Src kinase could phosphorylate TAF15 and TAF15-
CIZ at a region containing the caspase cleavage site leading
to the block of cleavage. Therefore, it is postulated that
increased resistance to proteolysis caused by phosphorylation
of TAF15-CIZ might be advantageous for cancer cells that
lead to leukemogenesis [8, 88].

6. Effector Caspases as Prognostic Markers in
Leukemia Treatment

As the key effector of cellular death, caspase-3 expres-
sion/activity has been implicated as a predictor of survival
in AML and ALL [89, 90]. However, the results thus far are
controversial, and the clinical significance of caspase level
in leukemia is still obscure. Using quantitative Western blot
analysis, Estrov et al. measured the level of nonactivated
caspase-2, -3 and activated (cleaved) caspase-3 in peripheral
blood of 185 patients with newly diagnosed AML. They

reported that high levels of procaspase-2 and procaspase-
3 denoted poor survival, whereas the high level of cleaved
caspase-3 correlated with a favorable prognosis, although
with merely a marginal significance [89]. In contrast, most
other studies yielded negative data in regards to the associa-
tion between the level of caspase-3 and survival. For example,
Campos et al. observed no relationship between procaspase-
2 or procaspase-3 and clinical response of AML patients to
therapy as assessed by flow cytometry [91]. Svingen et al. also
reported level of procaspase-2 or procaspase-3 from bone
marrow samples failed to correlate with response of AML
patients to chemotherapy [92]. Other than focus on protein
level, Liu et al. detected caspase-3 activity in peripheral blood
of children with leukemia prior to, and following, the onset
of chemotherapy. They found no association with clinical
response but a significant correlation between the caspase-
3 activity over the first 24 hours following chemotherapy and
activities at hours 6 and 24 [93].

7. Effector Caspases as Therapeutic Targets

A hallmark feature of leukemia and other cancer cells is
the ability to escape apoptosis that correlates with chemo-
therapy resistance. Therefore, there have been enormous
efforts in developing new molecules that could reactivate
the apoptotic program in tumor cells. Up to now, a number
of compounds/peptides/antibodies targeting a diverse range
of apoptosis-related molecules are being explored at the
preclinical and clinical levels. For instance, small molecules/
antisenses/oligonucleotides that target Bcl-2, XIAP, and
survivin and antibodies that target death receptors have been
approved by US FDA in clinical trials [4, 94].

One potential strategy involves the modulation of natural
cellular caspase inhibitors such as XIAP, surviving, c-FLIP,
and Smac [95–97]. For example, XIAP, a member of IAP
(inhibitor of apoptosis) family, is a natural caspase inhibitor
that can specifically bind to the active sites of caspase-
3 and -7 or the dimer interface of caspase-9. Antisense
oligonucleotide of XIAP with a releasing caspase-3 activity
effect has entered the phase I clinical trial in cancer treatment
[4, 94, 98].

Another promising strategy is to design or discover small
molecules/compounds that directly activate effector cas-
pases. Because the activation of effector caspases, particularly
caspase-3, is ultimately involved in most apoptotic events,
molecules that directly target the effector caspases would be
ideal drug candidates. However, it would be extremely diffi-
cult considering their specific physiologic activation mecha-
nism which requires cleavage by apical caspases. Intriguingly,
after screening approximately 20,500 compounds, Putt et
al. identified PAC-1 (procaspase-activating compound-1), a
small molecule that can directly activate procaspase-3 in vitro
and induce apoptosis of primary colon cancer cells. It can
also induce growth arrest of tumors in murine cancer models
[99]. Although whether PAC-1 activates caspase-3 through
direct mechanism is still of dispute [100, 101], it provides
a potential strategy in treating the many cancers including
leukemia that express an elevated level of caspase-3.
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8. Conclusions

The pivotal role of effector caspases in multiple cancers
including leukemia has been extensively investigated and
recognized. The close connection of effector caspases with
leukemia-associated proteins promotes them as ideal target
for treatment. However, due to the dynamic state and
specific activation mechanism of caspase, development of
compounds of therapeutic value that directly target caspase is
far from satisfactory. A better understanding of caspases acti-
vation mechanism and newly developed approaches such as
chemical biology will help to generate new lead compounds
for cancer treatment. Moreover, drug combination including
caspases regulators and drugs that target cross talk signaling
pathways may be promising and find their way into the
clinic.
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